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The averaged equations of slow flow in random arrays of fixed spheres are 
developed as a hierarchy of integro-differential equations, and an iteration 
procedure is described for obtaining the mean drag in the case of small volume 
concentration c .  The leading approximation is that given by Brinkman’s model 
of flow past a single fixed sphere, in which the effects of all other spheres are 
treated as a Darcy resistance. The higher approximations take account of the 
modification to the mean flow, particularly in the near field, due to the localized 
nature of the actual resistance. Thus the second approximation finds the change 
due to a second sphere, and averages over all its possible positions. The result 
for the mean drag confirms Childress’ terms in clogc and c (apart from an 
arithmetical correction to the latter), but indicates that for practical values of c 
numerical evaluation of integrals is needed, rather than expansion in powers of 
c and log c .  The last section of the paper develops the corresponding results for 
flow through random arrays of fixed parallel circular cylinders. 

1. Introduction 
This paper has as its context two different problems of viscous flow through 

sparse random arrays of small rigid objects, subject to external forces. 
(a)  The sedimentation problem, where the force on each object is prescribed, 

hence the velocities of the objects are random, and the mean sedimentation 
velocity is to be found (case I1 in Saffman 1973). 

(6 )  The porous-medium problem, where the objects are at rest, or have pre- 
scribed velocities, so that the forces acting on them must be random, and th, 
mean drag force is to be found (case I11 in Saffman 1973). 

The method set out by Batchelor (1972), recognizing that it is not sensible to 
try to sum all the individual flow fields from isolated spheres in a uniform flow, 
shows that the need to do so is removed by proper use of the bulk properties 
of the flow. This has overcome the trouble with divergent integrals in problem (a).  
But in problem ( b )  the same idea must be taken further, with the introduction 
of a modified differential equation that can account not just for the bulk properties 
but also for flow variations having length scales much larger than the sphere 
radius. 

The distinctive feature of the latter problem, namely that the resistance due 
to  the whole cloud of particles enters crucially into the flow past an individual 
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particle, was incorporated into a mathematical model by Brinkman (1947), 
for the case of small spherical objects. To describe the mean flow past a particular 
sphere he set up an effective medium, defined by t’he simplest differential equa- 
tion that would reduce to Darcy’s law for a uniform velocity and to the equation 
of slow viscous flow for small-scale velocity variations. His reasoning is heuristic, 
but somewhat surprisingly, the resulting first correctmion to  the simple Stokes 
drag formula, for sparse distributions of spheres, is exactly correct. A reason 
for this is suggested a t  the end of $ 3  of this paper. It should be emphasized 
that Brinkman’s model is to be viewed as providing a first approximation for 
the mean flow past a sphere in the case of sparse distributions (and perhaps more 
generally). It is basic to the present paper, which seeks to give a scheme for 
obtaining higher approximations. 

Tam (1969), in addition to generalizing Brinkman’s result to the case of 
a distribution of sphere sizes, also set out to derive Brinkman’s equation, in 
the point-particle approximation for the spheres. But the estimate he gives for 
the error is incorrect, and attention should also be paid to the question of con- 
vergence of the various sums and integrals used as the number of particles tends 
to infinity (which is the situation presupposed by the fhal equations for drag). 
In some cases the convergence will fail. 

The article by Lundgren (1972) studies more fully the flow past a sphere, 
subject to Brinkman’s equation. But in the application of this to the porous- 
medium problem, it ignores more important effects due to the difference between 
distributed and localized resist’ance. 

Childress (1972) first develops an elaborate scheme for ordering all the inter- 
actions between spheres, thus calculating the drag correct to relative order c. 
Then in 0 7 he gives an alternative method using the point-particle approxima- 
tion, based on an infinite hierarchy of differential-functional equations for the 
mean flows in the cases where 1,2,3,  . . . , particles have prescribed positions. The 
use of differential equations from the start avoids the convergence difficulty, 
and by going to the second equation of the set before making the closure approxi- 
mation he is able to carry the exact expansion for the drag a stage further than 
Brinkman and Tam. The results obtained by his two methods agree as far as 
the term in clogc; more could not be expected because of the point-particle 
approximation. 

The second method, much the simpler of the two, is limited by Childress to 
the point-particle model since if random regions are to be omitted in averaging 
the velocity field, then the operation of differentiating with respect to the point 
of observation does not commute with the averaging. But this is not a necessary 
limitation: in the present paper the difficulty is avoided by the use of an extended 
velocity field, obeying the viscous flow equation even in the interior of the 
obstacles. We then rewrite Childress’ hierarchy by introducing the mean surface 
stress distribution over an obstacle in a prescribed position. An iteration method 
of solution issuggested, and illustrated by calculating the drag to relative order ch. 
This claim to accuracy is based on reasonable error estimates which the formula- 
tion makes possible. 

Two-dimensional flows (both transverse and longitudinal), through random 
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arrays of infinite parallel cylindrical rods, are treated by the same method. 
In  these problems, however, the effect of the fixed obstacles is more striking. 
For in contrast to the three-dimensional case, there would be no solution for 
flow past a cylinder, given uniform flow a t  infinity, without some modification 
of the governing equation. The relative orders of magnitude of effects are also 
considerably changed, and (as might be expected) the drag expansions contain 
sub-series in negative powers of log c before powers of c are encountered. 

The layout of the article is as follows. The averaging of the viscous flow equa- 
tions is explained in 8 2. Section 3 contains further preliminary discussion of 
the whole question, in terms of the elementary mean flows, or Green’s functions. 
In $ 4 the most convenient approximations to these are derived as solutions of 
Brinkman’s equation, as well as drag formulae for flows satisfying that equation. 
Section 5 develops the hierarchy of equations for the mean flow through an 
infinite array of spheres and for the mean drag on the spheres. In  $ 6  the mean 
drag is calculated as far as the term in d, and 5 7 contains the corresponding 
calculation for arrays of infinite cylinders. 

2. Notation and formulation of the basic mean flow equations 
Xpherical objects 

In  the simplest situation, the fixed rigid spheres, all of radius a, are distributed 
in a statistically homogeneous manner, with mean number density n per unit 
volume, in an unbounded Newtonian fluid of viscosity p. Then c = $na3n is the 
mean volume fraction occupied by the spheres. 

Mean values are taken with respect to the ensemble of configurations of this 
infinite array. Equations will be written for the mean values of flow quantities 
a t  the point r, conditional on the presence of a finite number of test spheres 
centred at rl, r2, . . . , rm. Probability densities, absolute and conditional, are 
denoted by (for example) P(r) for the distribution of a single sphere centre and 
P(rlr,) for the Conditional distribution given another sphere centred a t  rl. 
All the calculations are made using the simplest forms for these densities: the 
value n for P(r), and for P(rlr,) when Ir-rJ > 2a; zero for P(rlr,) when 
/r-rll < 2a. 

Before averaging, we need to extend the domain of definition of the flow 
quantities throughout the whole space (cf. Lundgren 1972,s 2); since the spheres 
are all at rest, a natural way of doing this is to make the velocity and pressure 
gradient zero in the interiors of the spheres, thus satisfying the same equation of 
slow viscous flow as in the exterior region. The extended velocity field is then 
continuous everywhere, and without sources or sinks, so that the averaged 
velocity also satisfies the incompressibility condition. In  assigning va,lues to the 
pressure itself, the only criterion is that statistical homogeneity be preserved, 
as it will be if we set the pressure in any sphere equal to the mean value a t  
the position of its centre (mean with respect to  all configurations for which 
that position lies in the fluid). The interior pressure is thus linearly related 
to the position of the sphere centre [equation (2.4)]. 

When the equation of slow viscous flow is averaged, the discontinuities in 
29-2 
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shear stress and pressure across the sphere surfaces contribute a resistance term, 
equal to the expected surface force per unit volume. Thus, however the averaging 
is conditioned, we can write for the equation of mean flow 

- V ( p ) + p V * ( u )  = -R(r). (2.1) 

The distributed resistance R is given by an integral over the locus of the centre 
positions of spheres passing through r. If a denotes a vector of length a, da the 
element of area on the surface and we introduce the vector quantity T(a; r - a, . . .) 
for the mean surface stress a t  r subject to the additional condition of a sphere 
centred a t  r - a, then 

R(r) = -IT(a; r - a, . . .) P(r - a \ .  . .) da. (2.2) 

It is to be noticed that (2.1) holds even within the test spheres, and that R is 
zero there, as well as (u) and V ( p ) .  

Consider now the means in the absence of test spheres (except that when it 
comes to surface stress and total drag one test sphere is necessarily involved; 
this is indicated by the suffix 1). U will denote the mean velocity and F, the 
quantity to be determined, the mean drag force on a sphere, which is related to 
the mean surface stress by 

F, = ITl(a; r) da. (2.3) 

But given the extended definition of pressure, T,(a; r) is independent of r, and 
(2.2) shows that the (unconditioned) mean resistance force per unit volume is 
minus the number density times F,. Then (2.1) gives, with appeal to the linearity 
of the problem, 

Here the notationpa2 has been introduced for the Darcy’s law coefficient in (2.4), 
because of its greater convenience in the formulae for the Green’s function ( $  4). 
The coefficient will eventually be determined by self-consistency. In terms of 
the mean effective velocity U, felt by a sphere, F, is GnpU,, and 

- V ( p )  = nF, = pa2U. (2.4) 

a2 = GnanU,/U = (9c/2a2) V,/U.  (2.5) 

at = 9c/2a2. (2.6) 

The leading approximation to this, for small c, is 

a-1 has the dimensions of length and is called the shielding radius. 
In  the presence of one or more test spheres, if the resistance force at each point 

is again set, as a first approximation, equal to - p 2  times the mean velocity 
there, then (2.1) leads to Brinkman’s equation, which is studied in greater detail 
in $4.  Aatually Brinkman used a modified viscosity to allow for the effects of 
the finite size of the spheres, as also did Lundgren; we do not follow them in 
this, because the difference is of relative order c, and is more conveniently allowed 
for, together with other effects at  least as important, by successive approxima- 
tions based on the Green’s function described in $4. 

A final word about notation: second-order tensors are written throughout 
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as dyadics, and indices denote powers as with matrices. (The unit dyadic I corre- 
sponds to &., and the direct product VV to a 2 p ,  arj.) The tensor 

9(r)  = (VV - IV2) 2a-2r-1 (1 - e-ar) 

gives the elementary solution for shielded Stokes flow ( 3  4), in the sense that 
a point force F a t  the origin produces a velocity (8qu)-1F.9(r) at the point r. 
Similarly X0(r) = - (VV - IV2) r gives the ordinary Stokeslet. 

The work on arrays of parallel rods requires only minor changes in the nota- 
tion; these are noted in the relevant section. 

3. Elementary flow fields and effective media 
The modification of the flow equation by the resistance term R [equation ( 2 .  l)], 

and the difference between the sedimentation and porous-medium problems, 
can be usefully discussed in terms of the elementary velocity field, or Green’s 
function: that is, the mean flow produced by a point force. This terminology is 
also related to the concept of an effective medium. 

I n  the sedimentation problem the introduction of a point force into the flow 
makes no difference to the drag on any particle, so that the elementary flow 
is given to a good approximation by the ordinary Stokes flow with a modified 
viscosity. Thus the effective medium for the motion of one particle is still just 
a viscous fluid, though for closer approximations some non-uniformity of 
properties has to come in. But when the particles are all fixed, the introduction 
of a point force alters the drag on each in such a way that the fluid further out is 
shielded from the influence of the force. The effects of such strong interactions 
cannot be treated as confined to a small number of particles a t  a time, in a suc- 
cessive approximation process. They are most simply allowed for by Brinkman’s 
uniform effective medium, having, as well as viscosity, a Darcy resistance 
coefficient to be determined by self-consistency [equation (2.5)] : the resulting 
elementary flow is the ‘shielded Stokeslet’ S .9(r) as in equation (4.7) below. 
This is a good first approximation; that  it is not exact can be seen by taking the 
surface stress on two fixed spheres when all the others are replaced by the uniform 
effective medium, and then using (2.2) to find the mean resistance field for the 
flows with one sphere in a prescribed position. The result cannot be proportional 
to the Brinkman form of the velocity field, on account of the second- and higher- 
order reflexions between the spheres. The second approximation should correct 
for these reflexions, and higher approximations take account of reflexions be- 
tween increasing numbers of spheres. 

For the purpose of making these corrections, $ 5  generalizes the concept of 
a Green’s function to that of the m-particle difference flow: the overall flow past m 
particles in any medium can be written as the sum of the main flow and a collec- 
tion of such difference flows, one for each combination of some or all of the par- 
ticles. Associated with these are the difference fields of resistance force, each 
related by ( 2 . 2 )  to a difference surface stress on an extra fixed particle introduced 
into the flow. Use of this relation means that the solution for k particles in one 
medium can define a problem with k- 1 particles in a new medium, and so 
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spheres is independent of the radius, but the total shearing force tends to zero 
at large radii, the variation being balanced by the distributed resistance. 

Analogues of Fuxen’s formula 
Some generalization of the drag result (4.6) is possible when the flow can be 
regarded as made up of a known, externally produced field, together with that 
generated directly by the stress distribution on the surface r = a, without any 
further reflexions: 

u(r) = uext(r) + u&). (4.9) 

ueXt, the externally produced field, has a regular continuation, satisfying (4.1), 
throughout the sphere r ,< a. uT, in r > a, is the flow generated by the (unknown) 
stress distribution T(a) [notation as in (2.2)]; it  can be expressed in terms of the 
Green’s function defined in (4.7), exactly as  for ordinary slow viscous flows: 

uT(r) = -- J T(a).S(r-a)da. 
87Tp 

(4.10) 

We thus have a definition of uT which is continuous throughout the whole space, 
is regular and satisfies (4.1) everywhere except on the surface r = a (if the 
appropriate pressure fields are introduced). And so, within the sphere, 

U = Uext + UT 
is a regular function satisfying (4.1); it  vanishes on the boundary by continuity, 
and hence throughout the sphere. 

The stress T(a) can then be determined by the requirement that u(r), to- 
gether with all its derivatives, should be zero at r = 0; but all t ha t  is needed to 
obtain the total drag is the vanishing of u(0) and V2u(0). Thus 

/ ~ ( a )  $(a) da = 8npue,t(O), 

IT(a). V2.f(a) da = 87rpV2uex,(0), 

from which, if F is the total drag, Fp that due to pressure forces and F, that due 
to shearing forces, we find 

(4.11) 

F, = 47rpa( 1 + aa + (elra - 1 - aa) a-2V2} uext( 0), 
Fp = QF, + 2np2a3( 1 - a-2V2) uext(0), 

and F = F , + F p  
= Snpz( 1 + aa + Qa2a2 + (elra - 1 - aa - Qcz2a2) c 2 V 2 }  Uext( 0) , 

the last of which could also be obtained from (4.5) by the principle of reciprocity. 
It may be noted that these lead to Faxen’s formula for F, as a + 0. 

Further explicit results are possible in the case of the spherical symmetry 
introduced a t  the beginning of this section. For then the stress distribution is 
completely determined by the (parallel) vectors Fp and F,: 

T(a) = (3/87~a~){F,+5,8.(2F,-F,)}; 



Drag on a random array of $xed objects 457 

and the velocity uT can be evaluated: in r > a, 

9 
il 

x (VV - IV2) - e-Orr . (4.12) czar 

Flows with cylindrical symmetry 
For transverse flows (in parallel planes perpendicular to the axis of symmetry) 
there is a set of formulae corresponding closely to those given already in this 
section. For longitudinal flows (parallel to the axis of symmetry) the situation is 
rather simpler, because the velocity field is now effectively scalar, and also the 
pressure is constant in planes perpendicular to the axis. The main formulae in 
the two cases are set out in table I ( r  now denotes the two-dimensional radius and 
F, F, and Fp are forces per unit length). 

Disturbance flow due to a rigid cylinder in uniform flow at infinity [cf. (4.2)-(4.6)] 

Transverse flow Longitudinal flow 

u = V.(VV-IV2) 

p = pV. G(A log ur) 
V = -U/K,(aa) 
A = 2uaK,(aa) + u2azKo(aa), 
B = 2  
F = 4np{uaKl(m)/Ko(aa) f +azaz} U 

u = VKo(ar) 

p = constant 
V = - U/Ko(aa) 

x { - Aa-2 log ar - B U - ~ K ~ ( ~ T ) }  

P = 2npU~~aK,(0la) /K~(c~a) 

Green’s function [cf. (4 .7) ]  

u = V.$,(r) u = J‘K,,(ur) 
9@) = (VV- IVz) 

x { - 2a-2 log ar - 2a-2Ko(ar)} 
F = -4npV P = -2npv 

Paxen’s formulae [cf. (4 .11) ]  

F, = F, + ~ T , M U % ~ (  1 - a-’V2) u,,,(O) P, = 0 
U is the flow due to the uniform axial 
pressure gradient, if any 

TABLE 1 
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5. Scheme for the treatment of any number of test spheres 
In the general case, there will be test spheres centred at  rl, r2, ..., rnL. Then 

in the region exterior to all of them, the conditioned averages of the flow quantities 
(averaged over the positions of all t.he other spheres) satisfy ( 2 .  l ) ,  which we write 
in the form 

- V ( p )  +pV2(u) -pa2(u) = - R(r)  -pa2(u). 

The boundary conditions are that (u) vanishes on Ir - rkl = a,  k = 1,2,  ..., m, 
and tends to U, the overall mean velocity, as r tends to infinity. But also, because 
of the extended definition of u throughout the whole space, its mean value 
vanishes in the interior of each test sphere, and hence (5.1) holds there too, with 
Rand V(p) equal to zero. The mean velocity can be written in the integral form, 
valid everywhere [of. (4.9) and (4.10)], 

(u) = U-- C T(a;r,).f(r-r,-a)da+- {R(r')+pa2(u(r'))) 
8 w  

x $(r - r') dr', (5.2) 
where T(a; r,) is the surface st,ress at rk +a. 

The quantities (u), (p) and R are now to be expressed as sums of terms re- 
ferring to successively larger numbers of t.est spheres, up to m. All terms (apart 
from those referring to the case of no test spheres) are to tend to zero at  infinity. 

I n  the absence of test spheres, there is no dependence on r, and both sides of 
(5.1) vanish [see (2.4)]: 

grip k = l  'Y ' S  

(u) = U, R(r)  = -pa2U, V(p) = -pa2U. 

With one test sphere, centred a t  rl, 

(u) = U+Ul(r-r l ) ,  R = -pa 2U+Rl(r-r l ) ,  V ( p )  = -p2U+Vpl( r - r J .  

Then, in Ir - rl I < a, 

U+Ul  = 0, - p 2 U + R 1  = 0, - p 2 U + V p l  = 0. (5.3) 

The mean surface stress is T,(a) at rl + a, on the test sphere. 
With two test spheres, centred a t  rI and r2, 

(u) = U + Ul(r - rl) + U,(r - r2) + U2(r; rl, r2), 

with similar expressions for R and V ( p ) .  In Ir - rll < a ,  

U,(r - r2) + U2(r; rl, r2) = 0, Rl(r - r2) + R2(r; rl, r2) = 0, etc., (5.4) 
and in \r-r21 < a there are the corresponding conditions. The mean surface 
stress is 

T,(a) + T2(a; rl, r2) at r, + a, on the first sphere, 
T,(a) + T2(a; r2, rl) at  r2 + a, on the second sphere. 

With three test spheres, centred at rl, r2 and r3, 

(u) = U + Ul(r - rl) + Ul(r - r2) + Ul(r - r3) + U2(r; r2, r3) 
+ U 2 R  r3, rl) + U2@; rl, r2) + U3@; rl, r2 ,r3), 
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Locus of centres \- I 
of spheres 

passing through r 

FIGURE 1. Surface of integration for resistance term. 

and there are similar expressions for R and V@). Applying all the conditions 
on the quantities already defined, we obtain in ]r - r,] < a 

U2(r; r2, r3) + U3(r; rl, r2, r3) = 0, R2(r;  r2, r3) + R3(r; rl, r,, r,) = 0, etc., 

(5.5) 

with the corresponding conditions in lr-r21 < a and ]r-r3] 6 a. The mean 
surface stress is T,(a) + T2(a; rl, r,) + T2(a; rl, r3) + T3(a; rl, r2, r3) at rl + a ,  on 
the first sphere, and on the others the expressions are obtained by symmetry. 

Connexion between the stages is provided by the boundary conditions [(5.3), 
(5.4), etc.], and also by the dependence of the resistance term on the surface 
stress term a t  the following stage. Thus [see (2.2)-(2.4) and figure 11 

pa2U = nJTl(a) da = nF,, (5.6) 
&(r- rl) = -JTl(a)(P(r -alrl) -n}da-JT,(a; r -a, r,) P(r - air,) da, (5.7) 

R2(r; r,, r,) = - /",(a) (P(r  - alrl, r2) - P(r - aJrl) - P(r - alr2) + n} da 
-~T2(a;r-a,rl){P(r-a~rl,r2)-P(r-a~rl))da 
-~T,(a;r-a,r,){P(r-a~r,, r2)-P(r-a\r2)}da 
- /T3(a; r - a, rl, r,) P(r - a]rl ,  r2) da. (5.8) 

In  both (5.7) and (5.8), all integrals but the last represent excluded-volume effects 
in the neighbourhood of the test spheres. 

This clearly generalizes to any number of test spheres. The equation 

- Vp.,,, +pV2U, - ka2U, = - R, - pa'U, (5.9) 

holds both inside and outside the spheres, subject to the boundary conditions 
extended throughout the interior of the spheres: 

rl, r,, . . ., rk-l, rk+l, . . . , r,) + U,(r; rl, r,, .. ., r,) = 0 

in l r - rk]<a ,  k = 1 , 2  ,..., m. (5.10) 
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Similar conditions hold for R, and Vp,. Then the velocity field U,, everywhere 
continuous and without sources or sinks, satisfies 

+pa2Um(r’; rl, . .., r,)} .#(r - r’) dr’. (5.11) 

These are all deduced by induction on m, from (5.1), (5.2) and the associated 
boundary conditions. 

Once the order of approximation m (the maximum number of spheres to be 
considered explicitly) has been chosen, the hierarchy of equations is truncated 
by the omission of &+pazU,. The boundary conditions (5.10), the integral 
equations (5.11) and the relations between R, and Tk+] [(5.6)-(5.8) and the 
generalizations] for k = 1,2, . . . , m - 1 then constitute a closed system. Rather 
than seeking a solution to this mth-order system in isolation, it is more efficient 
to proceed by iteration from order 1 up to order m, so that a new correction 
arises a t  each stage. Thus, typically, the flow corrections determined a t  stage 
m- 1 provide boundary conditions for the field problems at stage m, which 
begins with the m-sphere problem in the simplest effective medium, obtains 
the first approximations to U,, T, and &-l, and then successively the new 
corrections to T,-, and R,n--2, and so on down to T, and F,. The precision 
required at  each stage naturally depends on the order of approximation intended; 
it decreases progressively through the iteration process. 

This procedure will be illustrated in the next section, with a calculation of the 
mean drag correct to relative order cb. But it is useful first to write down some 
exact results, referring to the first two stages of a general treatment, in which the 
drag calculations of Q 4 are employed. 

For simplicity, we take the centre rl of the first test sphere to be a t  the origin. 
At the first stage, where there is one test sphere, the equations are written as 

and 

There has of course been no truncation. Then the drag calculation of (4.9)-(4.12) 
can be used a.s it  stands, with U + U,, replacing uext. For by (5.3) the integrand 
in the integral for U,, vanishes inside the sphere, so that we have an externally 
produced flow. Also the combined flow vanishes inside the sphere. With the 
notation 

B, = 1+a.u+~azu2, B, = (a2u2)-1(eaa-Bo) = &(1+a.u+&2u2+ ...), (5.13) 

UTl(r) = -- f T,(a) . 9 (r  - a) da. 
8 v  

the drag force is given by 

( 6 ~ p ) - ’ F ,  = B o U + ( B o + B z ~ z V 2 )  U,,(O). (5.14) 
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Further, the symmetry required for (4.12) exists, and so 

U,(r) = -$a(B,+B,a2V2) U.$(r) +U,,(r) 
2 

- $a [ {(B, + B2a2V2) u,,(o)>. (VV - Iv2) 
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sinh aa - aa 
a3a 

Here the first term is the reflexion of the main flow in the sphere; the second term 
u R 1  is that directly produced by the residue R, +,uccc2U1 of the resistance force; 
the third term, in square brackets, is the reflexion of U,, in the sphere. For the 
calculation in the next section, only the first two of these terms are large enough 
to be considered. 

U,, is now to be expressed in terms of the two-sphere stresses. With a change 
of variable in the integration, and the use of (5.6), (5.7) and (5.12), the result is 

Unl(r) = J UTIP - r2) {P(r210) - 4 dr, 

--!- j[{/T,(a;r,, O).9(r-r,-a)da}P(r2lO) 
87rP 

-pazUl(rz).9(r-rz)]drz. (5.16) 
So from (5.14) 

(6npa)-lF, = B0U+(B0+B2a2V2)~UT1(r-r2){Y(r,/0)-n}dr,~,,, 
1 --(Bo+B,azV2)/[{~T,(a;r,,0).9(r-r,-a)da}P(r,10) 

8TP 
-pa2U,(r,). $(r - rz)l dr2Ir=,. (5.17) 

In  this last formula, the first term is Brinkman's result; the second represents 
the principal excluded-volume effect (to leading order it is the same as that found 
by Batchelor in the sedimentation problem). The third term contains those higher- 
order interactions which are introduced by the localized nature of the resistance 
force. 

In  the calculation for two spheres the drag formulae of 3 4 can again be applied 
(though not the results of symmetry). In the neighbourhood of the first test 
sphere the combined flow Ul(r - r,) + Uz(r; 0, r,) separates in the required way, 
and (4.11) leads to  

(67rp~)-~F,(O;r,) = (B,+Bza2V2) Ul(r-rz)-- ST,(a; r2,O) 1 8nP 
x 9 ( r -  r2- a) da + Unz(r; 0, r,)} , (5.18) 

where the symbol UR2 corresponds exactly to U,, in (5.12). This can be used to 
eliminate the integral in T, from (5.17): 

(6npa)-l F, = B, U + (B, + B, a2V2) 

r=O 
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FIGURE 2. Iteration scheme for mean drag calculation (can be extended to  any order). 

Because this involves only the additional drag F,, it  is a convenient form for 
introducing the exact two-sphere interactions. But (5.17) is found to be more 
suitable when i t  comes to the three-sphere effects in $ 6 .  

6. Calculation of the drag on a sphere, as far as the term in c* 

The intended accuracy requires that the calculation be taken to the stage of 
three test spheres. It is hoped in this way to illustrate the general process, to 
confirm the correctness of the term in c and also to obtain a.n indication of the 
usefulness of the expansion a t  pract,ical values of c. 

In  what follows, subscripts refer to the number of test spheres, superscripts 
to the stage of iteration. The first stage (Uc,l), Fil)) is simply Brinkman's solution for 
viscous flow with simple shielding past one fixed sphere. A t  the second stage, 
Up) provides the boundary condition for the difference flow Ui2) when there are 
two fixed spheres with simple shielding; the corresponding differenoe stress Ti2) 
leads to the first correction Ri2' to the resistance in the single-sphere problem, 
and hence to the corrections Ui2) and FS2), for velocity and drag. At the third 
stage (and here the point-particle approximation is sufficient) UL') provides the 
boundary oondition for UL3), the three-sphere difference flow with simple shield- 
ing; proceeding via the two-sphere problem we find the second correction Fi3) 
to the required drag. The scheme is set out in figure 2; the final approximation for 
the mean drag is F:) + Fi2) + Fi3). 

For stage m, the triangle in the kth column denotes a field problem with k 
spheres. It depends on the (k- 1)-sphere problem at stage m- 1, through the 
boundary conditions (5.3)-(5.5), as shown by the arrows marked B. It depends 
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on the (k+l)-sphere problem at stage m, through the resistance terms (5.7) 
and (5.8)) as shown by the arrowheads under the symbols Rfm). It depends on 
the k-sphere problem at stage m - 1, as shown by the dotted arrows, principally 
through the term,ua2Ufin-1) added to the resistance, but also at one point through 
the excluded-volume effect on the resistance (5.7). For the accuracy aimed a t  
here, the stress distribution T over the spheres is required in only one of the 
field problems. Apart from this, the overall force is sufficient, as shown by the 
entry F. 

It may be noted in general that each use of a resistance residue term intro- 
duces a factor of order c and an extra volume integration, so that a t  the (m  + 1)th 
stage there is a factor cm times an m-fold volume integral. The possible order of 
magnitude of the result will depend on how many times, and with what argument, 
the Green’s function occurs as a factor in the integrand. 

Stage 1. The solution is known from (5.13)-(5.15)) when UB1 is omitted: 

(6.1) 1 -U in r Q a, { -ia(Bo+B2a2V2)U.9(r) in r > a, 
Uf) = (67r,ua)-l Fil) = BoU = (1 + aa + &a2a2) U, 

and from (5.12)) U$!i = Uil). With the self-consistency equation (2.5) for a, 
the first iteration gives 

up) = 

a2a2 = a:a2(1+ aoa + O(ata2))) ala2 = Zc. (6.2) 

Stage 2. We introduce a tensor coefficient D for the total drag on each of two 
fixed spheres in uniform flow, with simple shielding: 

Fi1)+Fi2)= 6npuU. D(r,a),  

so that Fi2) = 67rpaU. ( D  - lBo). 

D is known for a = 0 (Happel & Brenner 1965, p. 269: in their notation it is 
qPP+T,(I -PP); see also Goldman, Cox & Brenner 1966). And it is shown in 
appendix B that 

D(r, a )  = D(r, 0) .  {I + 2aaD(r, 0 ) ]  + O(a2ur). 

Then the correction to  the effective velocity resulting from stage 2 can be 
written down from the exact expression (5.19), in which U,, is to  be omitted, 
and the first approximations used for all the other velocities that  appear: 

UL2) = W 1 + w2 +W3 + w4? 

where 
W, = (Bo+B,a2V:,) IUi1) (r ’ - - r ){~(r1~)  -n)drlr;=oy 

W, = (B, -t B, a2Vi,) U\l)(r’ - r )  . 9 ( r )  dr 
r’=O 

W, = (ga)2B;U.I92(r).{I +iaB,~(r)}- lP(rlO)dr,  
W, = U.I[D(r,a)-B,{l  +&Bo9(r)]-l 

+ $uB,(2B,+B,a2V2) a2Vz9(r)]P(r10) dr. 
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The integral containing F, in (5.19) has been split into two parts W, and W,. 
The former contains long-range interactions; it can be evaluated as a series, with 
terms in c(au)-l, clogau, caa etc., and the first of these is cancelled by W,. 
The integral W, must be calculated numerically from the exact results for D, 
by the sa.me procedure as described by Batchelor (1972, p. 261). To leading order 
(a = 0) there are only short-range interactions, and there is no complication. 
But for the term in caa, a further expression involving Green's functions must be 
removed and evaluated analytically: accounting for all those interactions that 
vary as r-, out to the shielding radius. What remains in the integrand then has 
the expansion 

cGl(r) + coraG,(r) + O(ca2a+3U), a < r < a-1, 

where G, = O ( a 2 r 5 U )  and G, = O ( U ~ - ~ U ) .  The integral is then 
O(w2r-5U), a-1 < r ,  

c/ r> 20 Gl(r)dr+eaa~r>2aG,(r)dr+0(Uc210gc). 

In evaluating W, and W,, it is most convenient to let the Laplacian operate on 
U\') inside the integral. This can be done, as a limit process, if the velocity field is 
modified slightly in a thin shell containing the sphere surface. In  the limit the 
integral of ,uV2U',') over the thin shell is just  the total shear drag FI:). When the 
simplest probability densities are used ( 5  2, second paragraph), the various 
contributions to the effective velocity have the values 
B,U = U(1+aa+)a2a2), 

W, = Uc( 5 + 2aa + $a2a2), 

W, = - U( &xu + &a2a2)) 

W, = Uc{9/4aa+ l&s(log$aauz+ 6.7056 ...) ++ a(log#a2a2+5-0579 ...) 
+ O(a2a210g aa)}, 

W, = Uc(l.120.. . + 8.583.. .au+ O(a2a210gaa)}, 
and the total to this stage is 

Ui1)+Ui2) = U{l ++ aa+9c /4aa+~( log$a2a2+9 .608  ...) 

The elimination of a,  see (2.5), now requires just one use of (6.2), because the 
combination 4aa + 9c/( 4 m )  depends quadratically on the deviation of aa from 
its leading approximation. The result is 

+ 1 3 5  -pxa(log#a2a2+ 5-566 ...) + O(ca2a210gm)}. 

~ + $ ~ 5 c ( l o g c + 9 . 6 0 8 ) + ~ c ~ ( l o g c + 5 . 7 2 5 ) +  ... 
8 4 2  

The most unsatisfactory part of the calculation so far seems to be the expansion 
of the integral W, as in (6.3), for small values of au. Numerical integration shows 
that when c is larger than 0-002 the first term alone is a better approximation 
than the first three terms. Clearly the clog c term is of mainly theoretical interest; 
i t  is most unlikely that i t  could be verified by experiment. 

As an alternative, we can write W, as UcG, where G is known numerically 
as a function of aa, and omit W, entirely in this exploratory approach (it is 
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generally small comparedwith W, in the range of c for which (6.3) can be trusted). 
The self-consistency equation then takes the form 

9c2(G(aa) + 5 + 2aa + $a2a2) + 9c( 1 + @a) = 2a2a2, 

so that c, and hence the mean drag, can be found for each value of aa. 
Figure 5 shows the resulting mean drag coefficient for small values of c, together 

with that given by Brinkman's theory. It can be seen that the two-sphere inter- 
actions produce a small reduction in the drag, at concentrations less than 0.014. 

In  figure 7 the graphs are extended to concentrations that are not small, 
and the shielding radius is shown as well. The reasonable appearance of the 
results (see the comparison made by Tam ( 1 9 6 9 )  between experimental data and 
Brinkman's theory; and compare the value of c at close packing, about 0.74, 
with those a t  which infinite drag would be predicted by the theories: 0.79 for 
the present theory and 0-67 for Brinkman's) raises the question whether the 
flow equations with simple shielding may be a suitable first approximation even 
in the case of densely packed spheres. Actually the flow equations then reduce 
to Darcy's law with a skin effect near the boundaries,? and it would not be too 
difficult to correct for the omission of W,. But the multivariate distribution of 
spheres in close proximity would presumably play a bigger role. 

Stage 3. In  the three-sphere problem we are interested only in the leading 
contributions, supposing initially that these come from large values of the 
separations r2, r3 and r2 - r, (rl being taken to be at the origin), for which the 
point-particle approximation is sufficient. Thus (for example) in the integral 
of T(a) .9(r2 - a) over the sphere, the argument r2 - a is replaced by r2. The 
resistance force is just -n times the drag force on an extra test particle. The 
drag expression (4.11) is replaced by - pa2n-luext( 0), as if the externally pro- 
duced velocity field were uniform, but using the exact drag coefficient for that 
case. It is necessary to retain at least the correction factor 1 + aa to the simple 
Stokes drag, because of the cancelling of the leading terms in the resistance 
residues R, +pa2U,, etc. 

To this approximation, 
Uil) = ( -a2/8nn) U.$(r). (6.5) 

The two-particle problem, with the use of (5.17) and the symmetry between the 
two particles, now requires just a matrix inversion: 

For the three-particle system, we write 

Fk3)(O; r2,r3) = Pa' -X, Fi3)(r2; I-,, 0) = Pa2 -Y, 
n n 

012 a2 -9(r3-r2) = A, -$(r,) = 8, 
8nn 8nn 

t Cf. Saffman (1971). 
30 F L M  64 
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then with (6.6) and two similar expressions, the equations obtained are 

1 X+Y.  C + 2. B = U .  A. (I + A)-l. (B + C), 
X. C+ Y + 2. A = U .  B. (I + 6 ) ~ ~ .  (C +A), 
X. B + Y. A + 2 = U .  C. (I + C)-l. (A + B). 

The quantity required is now the resistance residue 

Ri3)(r3; 0, r2) +p2Ui2)(r,; 0, r2) = -nFk3)(r3; 0, r2) +p2Ui2)(r,; 0, r2) 
= pa2{ - 2 + U .  C. (I + C)-l. (A + B)} 
=pa2(X.B+Y.A), 

and the flow that results directly from this is 

a2 UR2 = g-J(X. B +Y. A) .9 (r -  r,) dr,. (6.9) 

The correction to the boundary condition for the two-sphere problem is also 
needed (by symmetry the same value applies a t  r2 and at  0) : 

Ui2)( - r2) = URl( - r2) 

= - -/{nFi2)(r3: 1 r2) -pa2U$1)(r,-r2)).9(r3)dr3 
8 v  

= -nu. JA2.(I+A)-l.Bdr3. (6.10) 

The drag on the sphere at r, due to the combination of (6.9) and (6.10) leads to 
the resistance residue 

~ i 3 ) ( r ~ )  +p2Ui2)(r2) = -p2[{Ui2)(r2) + UR2(r2)}. (I + C)-1- Ui2)(r2)] 

= -pa%j’{(X. B + Y. A). A + U . A2. (I + A)-1. B . C) 
x (I + C)-l dr,, 

and from the resulting flow, the final correction to the equivalent velocity felt 
by the sphere a t  0 is 

Up) = - [[ n2{X.B.A+Y.A2+U.A2.(I+A)-1.B.C} 

x (l+C)-1.Cdr2dr3. (6.11) 

The solution of (6.8) for X, Y and 2 and hence the integrand in (6.11) can 
be expressed as power series in A, B and C. It is now necessary to examine the 
orders of magnitude of the various contributions to the integral. First, con- 
sider the terms of lowest degree (the fifth) in A, B and C. Their contribution to 
(6.11) is of order U C ~ ( U C Z ) - ~ ,  or Uc2(au)-llogaa for the term B.A3. C, which is 
of third degree in one of the three factors. This last term is actually to be grouped 
with a second class of terms: all those having combined degree two in two of the 
factors (thus B.A3. C, C.A4. C, B.A5. C, ..., which come from solving the 
second and third equations of (6.8) simultaneously for Y and 2). Noting (from 
figure 3) that A depends on r2 and r,, B on r3 and rl, and C on rl and r2, we see 
that eaoh of these terms decays approximately (as far as the shielding radius) 
as the inverse square of the separation of the first particle from the other two. 
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FIGURE 3. Tensor coefficients for three-sphere problem. 
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FIGURE 4. Interaction diagrams. 

It follows that, after B. A3. C, the contributions of these terms to the integral 
are all of order Uc2(cca)-l. All other terms have integrals of order U(clogc)2 or 
smaller, and can be omitted here. Interaction diagrams for the significant terms 
are shown in figure 4. 

The resulting effective velocity correction is 

Ui3) = -w,~U.J/ (A. 82. A+  A.C. 8. A +  6.  C. A2+ A2. B. C + 6.  A3 

Ir. rl, - r, rll > I > 2a 2a x (I - A2)-I-- C. A*. (I - A2)-1). C dr2dr3, 
30-2 
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which becomes, after some rearrangement, and omission of all but the esssential 
restrictions on the region of integration, 

Up) = -n2U. /l(A. B2. A + A. C.  B. A + B.  C.  A2 + A2. B. C + (B - C) . A3) 

x Cdr,dr3-n2U. C . (1 A3. ( I  + A)-l dr3] . C dr,. (6.12) 
[?,-?,I >2a 

The integral of (B - C )  . A5. ( I  - A2)-'. C has also been omitted as insignificant. 
The form of the second integral in (6.12) shows tha t  it represents a correction 

to the interaction between two spheres when the drag on the second is modified 
by the presence of a third. So it is clear that the point-particle approximation 
will not be sufficient here, but that the integral of A3( I + A)-l should include 
all the drag contributions from stage 2. Thus corrected, the second term in (6.12) 
becomes 

~craU{9c/4aa- iaa- &a2a2+~s-c(logc+ 9.608 ...)} 
= # U ~ ~ ~ ( l 0 g c + 7 * 8 3 0  . . . ) + O ( U C ~ I O ~ ~ C ) .  

In  the other part of (6.12) the short-range interactions are not significant for 
the c+ term, and it follows that the point-particle approximation is sufficient 
there. (That is, if the power index of dependence of the integrand on any one 
of the separations r,, r3 - r, and r3, as far as the shielding radius, is decreased by 
unity algebraically, the integral ceases to be significant.) The total correction 
from stage 3 is finally found to be 

ULs) = (405l128J2) Ud(logc+0.379) + O ( U ~ ~ l o g ~ c ) .  

When this is combined with (6.4)) the coefficients of c and calogc differ from 
those given by Childress (1972), following his equation (8.1). Dr Childress says 
that he has now discovered errors in his formula (1.2c), where -3 should be 
+ &, and in the fourth line after (8.1)) where the value he gives for D31 should be 
multiplied by five. But there remain small discrepancies to be resolved. 

7. Drag in uniform longitudinal and transverse flow through arrays of 
infinite parallel rods 

The work of the preceding sections can to a great extent be taken over for the 
two-dimensional situations. Position vectors, denoted as before by r, rl, . . ., now 
lie in a plane; the rods are circular cylinders perpendicular to the plane, dis- 
tributed with mean number density A per unit area of the plane. Then A is also 
the mean rod length per unit volume, and the volume fraction is c = nha2. The 
overall mean velocities are denoted by U and U respectively in the longitudinal 
and transverse flow problems. The mean drag per unit length of rod and mean 
resistance per unit volume are written M follows. 

In  longitudinal flow 
p = ( 2 v / M , )  u,  (7.1) 

- R = hF = puf U ,  80 that afa2 = 2c/M,. (7.2) 
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I n  transverse flow 
F = (477.P/W u, ( 7 . 3 )  

- R = AF = paeU, so that aea2 = 4c/Mt. (7 .4 )  

The last part of $4 gives the appropriate Green's functions and drag formulae. 
The schemes set out in $3 5 and 6 apply, and even the integrals expressing the 
results in $ 6  can be used with a few modifications. But the relative orders of 
magnitude of the contributions are different: there is now an infinite series of 
negative powers of log c,  corresponding to interactions between increasing 
numbers of cylinders, but the effects of finite radius still appear as an order-c 
term. All the same, the calculations will be taken as far as order c in the earlier 
stages, because it is of interest to present the results numerically over a wide 
range of c. The case of longitudinal flow, which has been worked out more fully, 
is presented first. 

Longitudinal flow Stage I 

I n  combination with (7.1) the drag result can be written as 

U Pi1) Ua, aK,( a, a)  ---- - - 
4, 277.P a a l 4  ' 

and from (7 .2 )  the self-consistency equation is, to a sufficient approximation for 
small c, 

Euler's constant y arises in the expansion of KO about the origin. 

M,, - 3 log M,, + y = 3 log ( 2 / c ) .  (7 .5 )  

Stage 2 .  It is convenient to introduce the notation 

4 0  = Ko(aza). (7 .6 )  

(7 .7 )  
As in $ 6 ,  

u/q2 = pp/27rp + w, + w, + w, + w,, 

1 ~ ( r  1 0 )  dr. 
1 W4 = U D,(r, a,) - s( 4 0  + Ko(w) 

The calculation of W,, which like W, is of order Uc, is described briefly in 
appendix B. The first term in (7.S), of order U(logc)-4, results from the iteration 
process, in which inexact drag coefficients are used for the interactions a t  inter- 
mediate stages. 
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Volume fraction of spheres, c 

FIGURN 5. Mean drag coefficient F / 6 n p U  for spheres. A ,  second-order theory ($6, stage 2); 
Br, Brinkman’s theory. 

log,, c 

FIGURE 6.  Divisors in expressions F ,  = 4n,uU/M, and F, = 2n,uU/M, for mean drag per 
unit length of cylinder (3  7).  Suffixes : 1, transverse flow ; I ,  longitudinal flow; 1 ,  first -order 
theory; 2, second-order theory. 
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FIGURE 7. Mean drag coefficients and shielding radii according to the second-order theory 
extended to large concentrations ($6, end of stage 2 ; $ 7).  ---, drag coefficients. Spheres : 
A ,  FIGnpaU; Br, Brinkman's theory. Cylinders: MF1, F/4npU, transverse; M;1, F/2npU, 
longitudinal. - - -, corresponding shielding radii as multiples of a ;  (aa)-1, (atu)-1, (ala)-l. 

The important contribution from this stage is the integral that appears at  
the end of expression (7.8); its asymptotic form for large Mlo is 

Then the drag equation ( 7 . 7 )  becomes 

(7.9) 

4 Ml Q ( M ~ - 4 0 ) - 0 * 5 8 6 -  + 1 . 0 5 2 - + 0 ( H ~ 2 )  
4 0  i G 0  

1 1  
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which yields, after the use of (7.6) and (7.2), the self-consistency equation 

(7.10) 
0.586 1.345 2 

4 2  - 41% 4 2  + Y - - +7+0(~63) = flog:. 
4 2  M ,  

Stage 3. The treatment of this stage in 6 needs only the obvious modifications, 
and the discussion of orders of magnitude after (6.1 1)  is readily adapted to select 
the group of terms of order U(1og c ) - ~ .  The resulting drag correction (involving 
a two-fold integration over the plane) is given by 

= - 0.631 U/Mf,, 

leading to the new self-consistency equation 

(7.11) 

Transverse $ow 
As far as stage 2, the equation corresponding toI(7.10) is 

Mt2- &logi&+y- 0*470/Mt,+0(M,2) = 410gc-l) (7.12) 

where the coeficient of  ME^ is given by the leading term in 

- 2 sS:( r) . {I + M,- St( r)}-l dr 
4n 

(7.13) 

(for #t see the end of 4). 
As with arrays of spheres, the expansions of the W3 integrals (7.8) and (7.13) 

are unsatisfactory at practical values of c. So the results were obtained in the 
way described in Q 6, at the end of stage 2, exact expressions being available for 
W, and W,. This was done for both longitudinal and transverse flows: MI and Mt 
are plotted for small values of c in figure 6 and for larger values in figure 7. 
(The theory would predict infinite drag in longitudinal flow when c = 1, and 
in transverse flow when c = 0.63; at close packing the value is c = 0.91.) 

It seems that the results for longitudinal flow should be relevant to the study 
by Batchelor (1971) of the stress generated by pure straining motion in a sus- 
pension of elongated particles. Under the conditions described in s 4 of that paper, 
when the particles are aligned and have lateral spacing small compared with 
their length, we can differentiate the equation of motion and the boundary con- 
ditions with respect to x, the co-ordinate in the direction of the particles. Then 
the equation and boundary condition for &/ax are precisely those for u in the 
longitudinal flow problem studied here. (When the particles are not very close 
the averaged equations will be affected by the probability of encountering the 
end of a particle near the point of observation.) The conclusion would be that 
a more definite value can be given for the effective ratio of separation to particle 
radius, h/b in Batchelor’s equation (4.8): the denominator log (h/b) corresponds 
to MI in the present paper. 
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Appendix A. Consequences of spherical symmetry for the form of the 
velocity, pressure and resistive force fields in incompressible flows with 
viscosity and resistance linearly dependent on a single vector quantity 

The governing differential equations will be (2.1): 

- Vp +,uV'U = - R, (A 1) 

with V'p = V . R ,  (A 2 )  

where the resistive force R is a linear functional of u. The vector quantity on 
which the flow depends is denoted by S; its physical meaning is not specified a t  
present. 

Discussion is confined to flows generated by forces within a finite region, with 
a resistance relationship that ensures that U, Vp and R are O(r-l)  for large r.  

Now u, p and R are linear functions of S, and otherwise depend only on r, 
in such a way that the full rotation-reflexion group applied to S, r, u and R 
leaves the equations satisfied. It follows that u(r) and R(r) have the form 
r r .  Sk,(r) + Sk,(r) ,  and p ( r )  the form r .  Sk,(r).  These can be put in the more 
convenient form 

u = S .  VVf(r) + Sf,(r) ,  p = ,US. Vh(r), 

R = ,Us. VVg(r) +,USg,(r), 

where the five functions of r can be chosen so that fl, g ,  and the second derivatives 
off, g and h are O(r-1) for large r .  Then incompressibility requires 

s. V(V2fS f,} = 0, 

so that f, = -07, given the conditions at  infinity. Similarly (A 2) requires 
g, = V2(h - 9).  Thus the general form is 

u = S .  (VV- lVz)f(r), 

p = ,US. Vhfr), 

R = ,US. (VV - IV2)g(r) +pSVzh(r). 

(A 3) 

(A 4) 

(A 5 )  
Equation (A I)  leads to 

V2f+g-h = 0, 

since an additional constant can be incorporated into g without any other 
changes. 
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From (A 5) 
V.R =pS.VV2h, 

so that 

This case occurs if R = -pu2u (Brinkman), or more generally if 

for some function L(r). 

V .R = 0 implies V2h = 0. (A 7 )  

R - 1  u(r’) L(r - r’) dr’ 

Appendix B. Drag produced by a flow satisfying Brinkman’s equation, 
with uniform velocity U at infinity 

Pair of equal spheres 
The tensor drag coefficient D(r, a )  defined in Q 6 (stage 2) for two equal spheres 
centred at 0 and r is known when a = 0. The behaviour when aa is small can 
conveniently be derived from the integral equation of flow. If T(a) is the surface 
stress on one sphere, 

IT(a).f(r‘-a)da+IT(a).f(r’-r+a)da 
= 8npU on r‘ = a (a,ndon Ir‘-rl = a). 

Then from the expansion of the Green’s function in powers of a [equation (4.8)], 

= 8npU++/T(a)da+O(a2r/lT(a)Ida) on r’ = a. (B 1) 

Now the integral of T over the sphere is the total drag force; so if the remainder 
term is omitted, (B 1 )  corresponds to unshielded flow past the two spheres, with 
velocity U .  {I + 2aaD(r, a)} at large r’,  and hence a drag 

6npaU. {I + 2aaD(r, a)}. D(r, 0). 

The remainder term represents a non-uniform flow; the corresponding drag can 
be estimated on physical grounds as O(pUa2a2r), and t,hus 

D(r,a) = {I+2aaD(r,a)}. D(r,O)+O(dar). 
This can readily be solved for the coefficient D(r, a )  in terms of D(r, 0 ) ,  giving the 
expression quoted in Q 6. 

IT( a) . 90( r’ - a) da + IT( a) . .Po( r‘ - r + a) da 

Pair of equal cylinders parallel to t h j o w  
For the problem of longitudinal flow past two equal parallel infinite cylinders, 
with axes a distance h apart, a first approximate solution is obtained for the 
case where h is small compared with the shielding radius. In this approximation 
the near field is a slow viscous flow without resistance, produced by axial forces 
2npV per unit length on each cylinder. Matching with the far field 

u = U-2VK0(a,r) 
enables V to be determined. 

The harmonic velocity field having a logarithmic singularity of strength 2 V 
a t  infinity, and vanishing on the two cylinders, can be obtained as a series of 
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reflexions, or in terms of elliptic functions (Morse & Feshbach 1953, p. 1242): 
this provides the leading approximation to the near field (a,r < l),  and is to 
be matched with the far field in r h, giving 

V + U(K,(a,a) +K,(a,h) +g(h/a))-l if a,h < 1, 

where 411% 1% 11 g a =log(l+y-2)+2log (“1 n(y2-  1) 0304’ 

7 = h/2a + [(h!2a)2- 114, 

In  the notation of 9 7 ,  stage 2,  if h = Irl, V is equal to UD,(r, a,). 
It is not yet possible to evaluate the W, integral in 3 7 from this approximation 

to Dz(r,al) because the integrand contains a term in r2, arising from the re- 
flexion of velocity gradients. This is not simply a short-range effect, and must 
be calculated exactly. It is found then that 

The last integral now contains only short-range effects, for which the above 
calculation of D, is sufficiently aecurate. 
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